If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+28x-45=0
a = 4; b = 28; c = -45;
Δ = b2-4ac
Δ = 282-4·4·(-45)
Δ = 1504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1504}=\sqrt{16*94}=\sqrt{16}*\sqrt{94}=4\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{94}}{2*4}=\frac{-28-4\sqrt{94}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{94}}{2*4}=\frac{-28+4\sqrt{94}}{8} $
| 5x−1=3x+11 | | 5x3+250=0 | | 5a+40=3a+56 | | 21y+21=12y-19 | | 3(2–3x)=-5x+18 | | 61y+12=19y-10 | | 6−x4=4(x+1)9 | | 2x-14=x−2 | | X3+-2x+-1=0 | | 0.25x^2-x-8=0 | | 6{t+3}=42 | | 6–2x=-4+3x | | 4s–5=11 | | x-3520-0,01x-(0,01.21000)=100000 | | x-3520-0,01x=100000 | | x-3520-0,01x-(0,01^21000)=100000 | | x-3520-0,01x-(0,01x21000)=100000 | | F(x)=0,5x-2 | | 2x+50+180-4x=180 | | F(x)=0,5x+2 | | F(x)=2x+0,5 | | F(x)=-2x+0,5 | | F(x)=2x-0,5 | | 3x-1+2x+2(7)=90 | | 3x-10+10+30=180 | | 4(4x-2)+5=6x-4 | | (1/4)*s+8=40 | | 1.5t+10=-35 | | x^{4}-x^{3}-27x^{2}+25x+50=0 | | 3.5w-20=22 | | 3.5w-20=222 | | X+4x+8x=266 |